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a b s t r a c t 

Structural brain networks constructed from diffusion MRI are important biomarkers for understanding human 

brain structure and its relation to cognitive functioning. There is increasing interest in learning differences in 

structural brain networks between groups of subjects in neuroimaging studies, leading to a variable selection 

problem in network classification. Traditional methods often use independent edgewise tests or unstructured 

generalized linear model (GLM) with regularization on vectorized networks to select edges distinguishing the 

groups, which ignore the network structure and make the results hard to interpret. In this paper, we develop a 

symmetric bilinear logistic regression (SBLR) with elastic-net penalty to identify a set of small clique subgraphs 

in network classification. Clique subgraphs, consisting of all the interconnections among a subset of brain re- 

gions, have appealing neurological interpretations as they may correspond to some anatomical circuits in the 

brain related to the outcome. We apply this method to study differences in the structural connectome between 

adolescents with high and low crystallized cognitive ability, using the crystallized cognition composite score, pic- 

ture vocabulary and oral reading recognition tests from NIH Toolbox. A few clique subgraphs containing several 

small sets of brain regions are identified between different levels of functioning, indicating their importance in 

crystallized cognition. 
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. Introduction 

Recent advances in magnetic resonance imaging (MRI) techniques

nable us to noninvasively probe the human brain at higher resolu-

ions than ever before ( Glasser et al., 2016 ) and reconstruct connec-

omes with distinct physiological meanings ( Park and Friston, 2013 ).

mong them, the diffusion MRI (dMRI) infers the locations and direc-

ions of white matter (WM) fiber tracts via measuring the water molecu-

ar movement along major fiber bundles in WM. Diffusion MRI data are

ow collected in almost all major cohort-based neuroimaging studies,

.g., the Human Connectome Project ( Van Essen et al., 2013 ), the UK

iobank ( Miller et al., 2016 ) and the Adolescent Brain Cognitive Devel-

pment (ABCD) Study ( Casey et al., 2018 ). Structural connectivity (SC)

nalysis is among the most important applications of dMRI ( Park and

riston, 2013; Yeh et al., 2016; Zhang et al., 2018; Zhao et al., 2015 ),

here individual-level microstructural brain networks are constructed

o delineate anatomical connections between brain regions. Fig. 1 il-
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ustrates the pipeline we used for extracting SC ( Zhang et al., 2018 )

 Fig. 1 a) and an SC matrix extracted from one subject in the ABCD data

 Fig. 1 b). 

Brain network classification and identification of predictive subnet-

orks are probably among the most important applications of SC into

he mechanistic understanding of neuroscience phenomena. One typical

pproach to this network classification and variable selection problem

s to treat all the connections of SC as a long feature vector, and apply

xisting classification methods for vectors, such as generalized linear

odels with 𝐿 1 or elastic-net penalty ( Zou and Hastie, 2005 ), support

ector machines ( Zhu et al., 2004 ) etc. Another popular approach in the

euroscience literature is to perform massive univariate tests at each

dge with multiple testing correction to identify edges that are signif-

cantly different between two groups. While these methods may have

ood prediction, they ignore the network nature of the data and do not

uarantee any structure among the selected individual edges, making

he results hard to interpret. 
ester.edu (Z. Zhang). 
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Fig. 1. (a) shows the pipeline we used to extract the network and (b) shows a structural brain network extracted from the ABCD data. 
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Other feature extraction approaches often employ a two-step pro-

edure, where some unsupervised dimension reduction is first applied

n the networks, and then a regression model is fitted on the extracted

ow-dimensional features. Zhang et al. (2019) proposed to use tensor

ecomposition approach to map networks to low-dimensional vectors.

impson et al. (2011) proposed to reduce the networks to some topolog-

cal summary measures such as clustering coefficient, network density,

tc. However, such connectome simplification leads to an enormous loss

f information and brings troubles in truly understanding which part of

he brain network is responsible for the group difference. 

There are a few advanced statistical methods considering the

etwork structure when analyzing group differences in connectome.

ogelstein et al. (2012) proposed to search for a minimum set of ver-

ices and edges distinguishing groups, but this method only applies to

inary edges and involves solving a combinatorial optimization prob-

em. Durante et al. (2018) developed a method for testing global and

ocal changes in SC between groups, which gains power by accounting

or dependence structure among edges through a Bayesian nonparamet-

ic modeling of the networks. Arroyo Relión et al. (2019) proposed a

raph classification method that uses edge weights as predictors and in-

orporates 𝐿 1 and group lasso penalty to penalize both the number of

dges and the number of nodes selected. 

We developed a symmetric bilinear logistic regression (SBLR) model

ith elastic-net penalty to select a set of small clique signal subgraphs

n network classification. A clique subgraph in graph theory refers to

 subset of nodes of an undirected graph such that every two different

odes in the clique are connected ( Seidman and Foster, 1978 ). SBLR

uts symmetry constraint on the coefficient matrix in the logistic re-

ression, because the adjacency matrices of structural brain networks

re symmetric. The novelties and significance of our approach reside

n: 

• The small clique subgraphs identified by our method have appealing

interpretations in neuroscience field. Clique subgraphs (containing

all the interconnections among a subset of nodes) potentially aligns

with the physiological meaning of subgraphs that should be strongly

interrelated in order to provide the most efficient neural support of

a behavior ( Bassett and Sporns, 2017 ). Despite the clique structure

imposed on the selected subgraphs, our model maintains the flexi-

bility of identifying individual edges in network classification and

good classification rate. 
• The elastic-net penalty penalizes the size of each identified clique

subgraph, producing a parsimonious representation of differences

in brain connectome. We develop a coordinate descent algorithm

for model estimation where analytical solutions are derived for a

sequence of conditional convex optimizations. The code for imple-

menting the algorithm is publicly available at https://github.com/

wangronglu/SBLR . 

• The SBLR approach is applied to examine structural network classi-

fication for crystallized intelligence among 4213 right-handed ado-

lescents aged 9-10 years in the ABCD study. Emerging literature

suggests unique roles of white matter in supporting general cogni-

tion and differentiating crystallized and fluid intelligence ( Góngora

et al., 2020; Penke et al., 2012; Simpson-Kent et al., 2020 ). Of

note, age 9-10 represents a critical change point for the relation-

ship between white matter and crystallized intelligence ( Simpson-

Kent et al., 2020 ). Thus far, however, no study has specified the

role of SC in crystallized intelligence of adolescents. We extensively

analyzed SCs of subjects in ABCD with high vs. low crystallized in-

telligence using our SBLR model, aiming at learning interpretable

SC-based brain connectome maps that can differentiate the levels of

crystallized intelligence. 

The rest of the paper is organized as follows. Section 2 introduces

he data preprocessing steps, our method and the algorithm for model

stimation. Section 3 presents simulation studies demonstrating good

erformance of SBLR in recovering true clique signal subgraphs com-

ared with other methods. Application of this method to ABCD data in

ection 4 shows coherent subgraphs of crystallized intelligence across

omposite score and individual domains. We conclude with a brief dis-

ussion in Section 5 . 

. Methods 

.1. ABCD data preprocessing 

We focus on the ABCD dataset downloaded from NIH Data Archive

 https://nda.nih.gov ) ( Casey et al., 2018 ). The main goal of the ABCD

tudy is to track the brain development from childhood through adoles-

ence to understand biological and environmental factors that can af-

ect the brain’s developmental trajectory. ABCD recruits approximately

0,000 9 − 10 years old children. Longitudinal measures of the brain

https://github.com/wangronglu/SBLR
https://nda.nih.gov
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Fig. 2. Histograms of ages, age-corrected crystallized cognition composite scores, picture vocabulary scores and reading scores of the 4213 subjects involved in this 

study. 
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tructure and function as well as rich behavior measures and genetic

actors are collected across 21 sites in the United States ( Auchter et al.,

018 ). 

Imaging data and preprocessing : The ABCD imaging protocol is harmo-

ized for three types of 3T scanners: Siemens Prisma, General Electric

GE) 750 and Philips. We downloaded the structural T1 MRI and diffu-

ion MRI (dMRI) data for 5253 subjects from the ABCD 2.0 release. The

tructural T1 image was acquired with isotropic resolution of 1 mm 

3 .

he diffusion MRI image was obtained based on imaging parameters: 1.7

m 

3 resolution, four different b-values ( 𝑏 = 500 , 1000 , 2000 , 3000 ) and 96

iffusion directions. There are 6 directions at 𝑏 = 500 , 15 directions at

 = 1000 , 15 directions at 𝑏 = 2000 , 60 directions at 𝑏 = 3000 . Multiband

actor 3 is used for dMRI acceleration. See Casey et al. (2018) for more

etails about the data acquisition and preprocessing of the ABCD data. 

To obtain structural connectome, we used a state-of-the art dMRI

ata preprocessing framework named population-based structural con-

ectome (PSC) mapping ( Zhang et al., 2018 ). PSC uses a reproducible

robabilistic tractography algorithm ( Girard et al., 2014; Maier-Hein

t al., 2017 ) to generate the whole-brain tractography. This tractogra-

hy method borrows anatomical information from high-resolution T1-

eighted imaging to reduce bias in reconstruction of tractography. On

verage, about 10 6 streamlines were generated for each subject. We used

he popular Desikan–Killiany atlas ( Desikan et al., 2006 ) to define the

rain regions of interest (ROIs) corresponding to the nodes in the struc-

ural connectivity network. The Desikan–Killiany parcellation has 68

ortical surface regions with 34 nodes in each hemisphere. Freesurfer

oftware ( Dale et al., 1999; Fischl et al., 2004 ) is used to perform brain

egistration and parcellation. Next, for each pair of ROIs, we extracted

he streamlines connecting them. In this process several procedures were

sed to increase the reproducibility: (1) each gray matter ROI is dilated

o include a small portion of white matter region, (2) streamlines con-

ecting multiple ROIs are cut into pieces so that we can extract the

orrect and complete pathway and (3) apparent outlier streamlines are

emoved. Extensive experiments have illustrated that these procedures

an significantly improve the reproducibility of the extracted weighted

etworks, and readers can refer to Zhang et al. (2018) for more de-

ails. To analyze the brain as a network, a scalar number is usually

xtracted to summarize each connection. Here we use fiber count, but

ther measures, such as mean fractional anisotropy or connected surface

rea ( Zhang et al., 2018 ) can be easily extracted using PSC. 

Applying PSC, we processed 5253 subjects downloaded from NIH

ata Archive. To control for handedness, we only focused on the 4213

ight-handed subjects in our analysis. The distributions of the age, crys-

allized cognition composite score, picture vocabulary score and reading

core are shown in Fig. 2 . For each composite or domain-specific crys-

allized intelligence score, subsets of subjects with age-adjusted scale

cores 1 standard deviation above or below the national average are

ategorized into high vs. low crystallized intelligence group. 

.2. Symmetric bilinear logistic regression (SBLR) 

Our data can be summarized as {( 𝑦 𝑖 , 𝒙 𝑖 , 𝑊 𝑖 ) ∶ 𝑖 = 1 , … , 𝑛 } , where 𝑦 𝑖
s a binary response; 𝒙 ∈ ℝ 

𝑚 contains the regular covariates of subject 𝑖
𝑖 
age, gender, etc.) with the first entry being 1; 𝑊 𝑖 denotes the structural

rain network measured for subject 𝑖, which is a 𝑉 × 𝑉 symmetric matrix

ith zero diagonal entries. Our goal is to learn a set of small clique

ubgraphs from the brain network that are relevant to the outcome. 

With this aim in mind, we propose the following symmetric bilinear

ogistic regression (SBLR): 

𝑦 𝑖 ∣ 𝑊 𝑖 , 𝒙 𝑖 
𝑖𝑛𝑑 ∼ Bern ( 𝑝 𝑖 ) , 𝑖 = 1 , … , 𝑛, 

logit ( 𝑝 𝑖 ) = 𝒙 ⊤
𝑖 
𝜶 + 

∑𝐾 

ℎ =1 𝜆ℎ 𝜷
⊤
ℎ 
𝑊 𝑖 𝜷ℎ 

(1) 

here 𝜶 ∈ ℝ 

𝑚 with the first entry being the intercept; 𝜷ℎ ∈ ℝ 

𝑉 and

ℎ ∈ ℝ , ℎ = 1 , … , 𝐾. We do not restrict the component vectors 𝜷ℎ ’s to be

rthogonal because such constraint may discourage the sparsity of these

ectors. Model (1) assumes that the binary outcome 𝑦 𝑖 of each individual

ollows an independent Bernoulli distribution given the network obser-

ation 𝑊 𝑖 and other covariates 𝒙 𝑖 . 

The coefficients of the network predictor in model (1) are assumed

o have 𝐾 components, where each component matrix 𝜆ℎ 𝜷ℎ 𝜷
𝑇 
ℎ 

selects a

ignal subgraph. For ease of interpretation, the logit link of (1) can be

ritten in the matrix dot product form: 

ogit ( 𝑝 𝑖 ) = 𝒙 ⊤
𝑖 
𝜶 + 

𝐾 ∑
ℎ =1 

⟨
𝜆ℎ 𝜷ℎ 𝜷

⊤
ℎ 
, 𝑊 

𝑖 

⟩
(2)

here ⟨𝐵, 𝑊 ⟩ = trace( 𝐵 

⊤𝑊 ) = vec ( 𝐵) ⊤ vec( 𝑊 ). The parameters 𝜆ℎ ’s in

2) are necessary to avoid constraining the coefficient matrix of 𝑊 𝑖 to be

ositive semi-definite. From (2) , we can see that the nonzero entries in

ach component matrix 𝜆ℎ 𝜷ℎ 𝜷
⊤
ℎ 

locate an outcome-relevant clique sub-

raph in the network predictor. If 𝜷ℎ only contains two nonzero entries,

he corresponding subgraph comes down to a single edge. 

To ensure both identifiability of model (2) and sparsity of coeffi-

ient matrices 
{
𝜆ℎ 𝜷ℎ 𝜷

⊤
ℎ 
∶ ℎ = 1 , … , 𝐾 

}
, we penalize the magnitude of

he lower-triangular entries in these coefficient matrices with the fol-

owing elastic-net penalty: 

𝐾 ∑
 =1 

𝑉 ∑
𝑢 =1 

∑
𝑣<𝑢 

𝛿
[
𝜂|𝜆ℎ ||𝛽ℎ𝑢 ||𝛽ℎ𝑣 | + (1 − 𝜂) 𝜆2 

ℎ 
𝛽2 

ℎ𝑢 
𝛽2 

ℎ𝑣 
∕2 

]
(3) 

here the overall penalty factor 𝛿 > 0 and 𝜂 ∈ [0 , 1] controlling the frac-

ion of 𝐿 1 regularization. 

.3. Estimation 

The parameters in SBLR model (1) are estimated by minimizing the

oss function below: 

oss function = − 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝑙𝑙 𝑖 + 

𝐾 ∑
ℎ =1 

𝑉 ∑
𝑢 =1 

∑
𝑣<𝑢 

𝛿
[
𝜂|𝜆ℎ ||𝛽ℎ𝑢 ||𝛽ℎ𝑣 | + (1 − 𝜂) 𝜆2 

ℎ 
𝛽2 

ℎ𝑢 
𝛽2 

ℎ𝑣 
∕

(4) 

here 𝑙𝑙 𝑖 is the log-likelihood of subject 𝑖 . Plugging in the logit link of

1) , we have 

𝑙 𝑖 = 𝑦 𝑖 log ( 𝑝 𝑖 ) + (1 − 𝑦 𝑖 ) log (1 − 𝑝 𝑖 ) 
= 𝑦 𝑖 

(
𝒙 ⊤

𝑖 
𝜶 + 

∑𝐾 

ℎ =1 𝜆ℎ 𝜷
⊤
ℎ 
𝑊̃ 𝑖 𝜷ℎ 

)
+ log (1 − 𝑝 𝑖 ) 

(5) 
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here 𝑊̃ 𝑖 represents the normalized network observation with mean 0

nd variance 1 for each edge. 

The algorithm of block updating each component vector 𝜷ℎ in tensor

egression ( Zhou et al., 2013 ) is not applicable to minimizing the loss

unction (4) , because 𝑙𝑙 𝑖 is not a concave function of 𝜷ℎ when fixing the

ther parameters. Notice that 

𝜕 2 𝑙𝑙 𝑖 

𝜕 𝜷ℎ 𝜕 𝜷
⊤
ℎ 

= 2( 𝑦 𝑖 − 𝑝 𝑖 ) 𝜆ℎ 𝑊̃ 𝑖 − 4 𝑝 𝑖 (1 − 𝑝 𝑖 ) 𝜆2 ℎ 𝑊̃ 𝑖 𝜷ℎ 𝜷
⊤
ℎ 
𝑊̃ 𝑖 , 

hich may not be negative semi-definite. However, since the diagonal

ntries of each adjacency matrix 𝑊̃ 𝑖 are zero, the loss function (4) is

ctually a convex function of each entry 𝛽ℎ𝑢 in 𝜷ℎ when fixing the others,

aking the coordinate descent algorithm very appealing ( Wang et al.,

019 ). The technical details of deriving the analytic form update for

ach parameter are discussed in Appendix A . The coordinate descent

lgorithm for minimizing (4) is summarized in Algorithm 1 , where all

lgorithm 1 Coordinate descent for SBLR model with elastic-net

enalty. 

1: Input: Normalized 𝑉 × 𝑉 symmetric matrix observations { 𝑊̃ 𝑖 ∶
𝑖 = 1 , … , 𝑛 } , 𝑛 × 𝑚 design matrix 𝑋 = ( 𝒙 1 , … , 𝒙 𝑛 ) ⊤, binary outcome

{ 𝑦 𝑖 ∶ 𝑖 = 1 , … , 𝑛 } ; rank 𝐾, overall penalty factor 𝛿 > 0 , 𝐿 1 fractional

penalty factor 𝜂 ∈ [0 , 1] , tolerance 𝜖 > 0 . 
2: Output: Estimates of 𝜶, 

{(
𝜆ℎ , 𝜷ℎ 

)
∶ ℎ = 1 , … , 𝐾 

}
. 

3: Initialize: 𝜶 = 𝟎 and each parameter of 
{(

𝜆ℎ , 𝜷ℎ 

)
∶ ℎ = 1 , … , 𝐾 

}
∼

𝑈 (−0 . 1 , 0 . 1) . 
4: repeat 

5: for ℎ = 1 ∶ 𝐾 do 

6: for 𝑢 = 1 ∶ 𝑉 do 

7: update 𝛽ℎ𝑢 by (A.11) 

8: end for 

9: end for 

10: for ℎ = 1 ∶ 𝐾 do 

11: update 𝜆ℎ by (A.15) 

12: end for 

13: update 𝜶 by (A.16) 

14: until relative change of loss function ( ?? ) < 𝜖. 

he parameters are iteratively updated until the relative change of the

oss function (4) is smaller than a tolerance number 𝜖. Typical value

or 𝜖 is 10 −5 or 10 −6 . Since the loss function (4) is lower bounded by 0

nd each update always decreases the function value, Algorithm 1 is

uaranteed to converge. 

In general, the algorithm should be run from multiple initial-

zations to locate a good local solution. Although the estimates for

( 𝜆ℎ , 𝜷ℎ ) ∶ ℎ = 1 , … , 𝐾 

}
will all be zero under sufficiently large penalty

actor 𝛿, we cannot initialize them at zero because the results will then

et stuck at zero. The updating rules (A.11) and (A.15) imply that

ach parameter will be set to 0 given others being zero. In fact, we

ecommend to initialize all the parameters in 
{
( 𝜆ℎ , 𝜷ℎ ) ∶ ℎ = 1 , … , 𝐾 

}
o be nonzero in case some components get degenerated unexpect-

dly at the beginning. In practice, we initialize each parameter in

( 𝜆ℎ , 𝜷ℎ ) ∶ ℎ = 1 , … , 𝐾 

}
from the uniform distribution 𝑈 (−0 . 1 , 0 . 1) as

iscussed at the end of Section A.1 . 

.4. Model selection 

The penalty factor 𝛿 in the regularization (3) can be tuned on a val-

dation set over a grid of values on [ 𝛿min , 𝛿max ] for a fixed 𝜂, where 𝛿max 
s a roughly smallest value for which all the parameters 

{(
𝜆ℎ , 𝜷ℎ 

)}𝐾 

ℎ =1 
ecome zero, and 𝛿min = 𝜀𝛿max (e.g. 𝜀 = 0 . 01 ). The optimal 𝛿 produces

he smallest deviance (minus twice the log-likelihood) on validation set.

he fractional parameter of 𝐿 1 penalty, 𝜂 ∈ [0 , 1] , can also be selected

y validation. 
Our proposed model (1) assumes a known number of components

. In practice, we choose a large enough number for 𝐾 and allow the

lastic-net penalty (3) to discard unnecessary components, leading to a

ata-driven estimate for the number of signal subgraphs. We assess the

erformance of the procedure and verify its lack of sensitivity to the

hosen upper bound 𝐾 in simulations. 

. Simulation study 

We use simulations to compare the performance of recovering true

ignal subgraphs and predictive performance among SBLR and the fol-

owing methods: 

1. Logistic regression with elastic-net penalty on vectorized net-

works, where the upper triangular entries of each adjacency ma-

trix 𝑊 𝑖 are entered into a regularized logistic regression. The

grid of values for the 𝐿 1 fractional penalty factor 𝛼 is picked as

{0 . 1 , 0 . 2 , … , 1} . For each 𝛼, the optimal penalty factor 𝜆 is chosen

from a sequence of 100 equally spaced 𝜆 values on the logarith-

mic scale. This method is fitted with glmnet toolbox in Matlab

( http://www.stanford.edu/~hastie/glmnet_matlab ). 

2. Penalized graph classification (GC) approach ( Arroyo Relión et al.,

2019 ), which also uses edge weights as predictors, but incorporates

𝐿 1 and group lasso penalty to promote sparsity in selection of edges

and nodes. Their penalty factor pair ( 𝜆, 𝜌) is tuned over a 5 × 11 grid,

where 𝜆 ∈ {10 −4 , 10 −3 , … , 1} × 𝜆max and 𝜌 ∈ {1 , 10 , 20 , … , 100} , with

( 𝜆max , 𝜌 = 100) ensuring that all the coefficients are penalized to zero.

As Arroyo Relión et al. (2019) suggest, values of 𝜌 < 1 do not result

in node selection. This method is fitted with graphclass package

in R. 

3. Screening method based on multiple testing with false discovery rate

control (MT-FDR), where a two-sample 𝑡 -test is performed on each

edge in the network between the two groups. Multiple comparisons

are adjusted by rejecting all local nulls having a 𝑝 -value below the

Benjamini-Yekutieli threshold ( Benjamini et al., 2001 ) under arbi-

trary dependence assumptions on the multiple tests. The false dis-

covery rate is controlled at level 𝛼 = 0 . 05 . A logistic regression is

then fitted on the significant edge weights. 

4. Tensor network factorization analysis (TNFA) ( Zhang et al., 2019 ),

which embeds the 𝑉 × 𝑉 symmetric adjacency matrices { 𝑊 𝑖 ∶ 𝑖 =
1 , … , 𝑛 } into a low dimensional 𝑛 × 𝐾 matrix 𝑈 ( 𝐾 ≤ 𝑉 ). Each row 𝑖

of 𝑈 contains the 𝐾 principal component scores of subject 𝑖, and each

column of 𝑈 corresponds to a basis network. A logistic regression is

then fitted on the low embedding matrix 𝑈 . The basis networks cor-

responding to the significant coefficients are selected as signal sub-

networks. We use full rank 𝐾 = 𝑉 for TNFA in simulations, which

explains around 99% variation in the generated networks on aver-

age. 

In the data generating process, each adjacency matrix 𝑊 𝑖 is a 20 ×
0 symmetric matrix generated from a set of 15 basis subgraphs with

ndividual loading vectors 

 𝑖 = 

15 ∑
ℎ =1 

𝜆𝑖ℎ 𝒒 ℎ 𝒒 
⊤
ℎ 
+ Δ𝑖 , (6)

here 𝒒 ℎ ∈ {0 , 1} 20 is a random binary vector with ‖‖𝒒 ℎ ‖‖0 = ℎ + 1 , ℎ =
 , 2 , … , 15 . The loadings { 𝜆𝑖ℎ } in (6) are generated independently from

(0 , 1) . Δ𝑖 is a symmetric 20 × 20 noise matrix that adds 5% noise to

ach edge in 𝑊 𝑖 . Specifically, the ( 𝑢, 𝑣 )-th entry in Δ𝑖 (denoted as Δ𝑖 [ 𝑢𝑣 ] )

s sampled from a normal distribution with mean zero and standard

eviation 0 . 05 ∗ 𝑠𝑑 
(
( 
∑15 

ℎ =1 𝜆𝑖ℎ 𝒒 ℎ 𝒒 
⊤
ℎ 
) [ 𝑢𝑣 ] 

)
. The generating process (6) pro-

uces dense networks with complex correlation structure. These gener-

ted adjacency matrices { 𝑊 𝑖 ∶ 𝑖 = 1 , … , 𝑛 } are further standardized for

ach edge across subjects and the diagonals are set to zero. 

http://www.stanford.edu/~hastie/glmnet_matlab
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Fig. 3. True signal subgraphs (lower panel) corresponding to {0 . 1 𝒒 ℎ 𝒒 ⊤ℎ ∶ ℎ = 1 , 2 , 3} (upper panel) in one simulation. 

3

 

s  

B

l  

T  

e  

1
 

1  

f  

t  

(  

p  

W  

p  

t  

c  

f

 

f  

t  

𝛿  

t  

m  

a

 

d  

t  

a  

s  

u  

2  

d  

w  

s

 

t  

n  

t  

b  

n  

0

 

𝐾  

i  

S  

w  

c  

v  

y  

a  

s  

i  

e

 

𝑛  

W  

p  

p  

a  

p  

F  

F  

v  

a

 

s  

(  

f  

a  

s  

m  

i  
.1. Clique signal subgraphs 

In this setting, the binary response 𝑦 𝑖 is associated with 3 clique

ignal subgraphs in the network. Specifically, 𝑦 𝑖 is generated from

ernoulli( 𝑝 𝑖 ) with 

ogit ( 𝑝 𝑖 ) = 0 . 1 𝒒 ⊤1 𝑊 𝑖 𝒒 1 + 0 . 1 𝒒 ⊤2 𝑊 𝑖 𝒒 2 + 0 . 1 𝒒 ⊤3 𝑊 𝑖 𝒒 3 , 𝑖 = 1 , … , 𝑛. (7)

he generating process (7) indicates that the true signal subgraphs rel-

vant to 𝑦 correspond to the first three basis subgraphs { 𝒒 ℎ 𝒒 ⊤ℎ ∶ ℎ =
 , 2 , 3} as displayed in Fig. 3 . 

We consider two sample sizes in this simulation: 𝑛 = 500 and 𝑛 =
000 . For each sample size 𝑛, a dataset {( 𝑊 𝑖 , 𝑦 𝑖 ) ∶ 𝑖 = 1 , … , 𝑛 } is drawn

rom the generating process (6) , (7) . The dataset is then divided into

wo parts: training set (70%) and validation set (30%). Each method

SBLR, glmnet, GC) is fitted with training set and the optimal penalty

air is selected corresponding to the lowest deviance on validation set.

e then refit the model with full dataset under the optimal penalty

air. For each dataset, we additionally generate 200 pairs {( 𝑊 𝑖 , 𝑦 𝑖 )} as

est data and measure the predictive performance of each method by

omputing the area under an ROC curve (AUC) ( DeLong et al., 1988 )

or test data. 

Some input parameters of Algorithm 1 for SBLR model are set as

ollows. The tolerance 𝜖 = 10 −6 . The 𝐿 1 fractional penalty factor 𝜂 is

uned over 5 fixed values {0 . 6 , 0 . 7 , … , 1} . For each value of 𝜂, we set

min = 0 . 01 𝛿max and choose a sequence of 11 equally spaced 𝛿 values on

he logarithmic scale. 5 initializations are used in Algorithm 1 . Perfor-

ances under two different choices of 𝐾 are compared for SBLR: 𝐾 = 5
nd 𝐾 = 10 . 

The estimated results under optimal penalty pair from glmnet are

isplayed in Fig. 4 . As can be seen, the accuracy of glmnet improves as

he sample size 𝑛 increases, in terms of selecting more true signal edges

nd fewer non-signal edges. But it is difficult to identify meaningful

tructure among the selected edges. Fig. 5 displays the estimated results

nder optimal penalty pair for the GC approach ( Arroyo Relión et al.,

019 ). Although this approach identifies all the true signal edges un-

er larger sample size, it also selects a larger number of false edges. As

ith glmnet, this approach does not guarantee any structure among the

elected edges. 
Multiple 𝑡 -test screening method (MT-FDR) deems many more edges

o be significant in this case, taking up about 86% and 95% of the total

umber of edges in the network under 𝑛 = 500 and 𝑛 = 1000 , respec-

ively. Tensor factorization approach (TNFA) on the contrary selects no

asis networks under each sample size, because none of the 20 compo-

ents are significant in the logistic regression at the significance level of

.05. 

The estimated results under the optimal penalty pair of SBLR with

 = 5 and 𝐾 = 10 are displayed in Fig. 6 . The performance of SBLR

mproves with larger sample size. Compared to Fig. 3, Fig. 6 shows that

BLR recovers all the true signal subgraphs under 𝑛 = 1000 with fewer

rong edges compared to 𝑛 = 500 . The cliques identified by SBLR may

hange under different 𝐾 due to random initialization for component

ectors. As can be seen in Fig. 6 , the selected subgraphs are different

et with many overlaps under the sample size 𝑛 = 500 between 𝐾 = 5
nd 𝐾 = 10 . The results become more stable under the larger sample

ize 𝑛 = 1000 , where the node memberships of the selected cliques are

dentical between 𝐾 = 5 and 𝐾 = 10 with very slight differences in the

stimated coefficients. 

The procedure above is repeated 100 times. For either sample size

, 100 datasets are generated based on the generating process (6) , (7) .

e record for each method the true positive rate (TPR) representing the

roportion of true signal edges that are correctly identified, the false

ositive rate (FPR) representing the proportion of non-signal edges that

re falsely identified, and the false discovery rate (FDR) describing the

roportion of selected edges that are false, as well as AUC for test data.

ig. 7 displays the mean and standard deviation (SD) of the TPR, FPR,

DR and AUC for each method across 100 datasets. Note that higher

alues for TPR and AUC are better, and lower scores of FPR and FDR

re better. 

Fig. 7 shows that the mean and SD of the four measures are very

imilar for SBLR under 𝐾 = 5 and 𝐾 = 10 , with the same type of penalty

 𝐿 1 or elastic-net) and the same sample size. This implies that the per-

ormance of SBLR is robust to the chosen upper bound for the rank. In

ddition, Fig. 7 shows that the mean TPR and AUC improve with larger

ample size for all the methods. But with increasing sample size, the

ean FPR and FDR of GC, multiple testing (MT-FDR) and tensor factor-

zation (TNFA) increase considerably. The mean FPR of GC and MT-FDR
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Fig. 4. Estimated results of glmnet under 𝑛 = 500 and 𝑛 = 1000 . In each panel, the left plot shows estimated coefficients (lower triangular) versus true values (upper 

triangular); the right plot shows the selected edges in the network, where black edges denote true signal edges and red ones falsely identified edges; the thickness of 

each edge is proportional to the magnitude of its estimated coefficient. 

Fig. 5. Estimated results of penalized graph classification (GC) approach under 𝑛 = 500 and 𝑛 = 1000 . In each panel, the left plot shows estimated coefficients (lower 

triangular) versus true values (upper triangular); the right plot shows the selected edges in the network, where black edges denote true signal edges and red ones 

falsely identified edges; the thickness of each edge is proportional to the magnitude of its estimated coefficient. 

a  

m  

m  

s  

t  

c  

d  

e  

t  

b  

f  

A  

T  

T  

s

 

I  

S  

𝑛  

i  

s

3

 

s  

a  

s  

a  

g  

t  

t  

e  

t  

w

r  

c  

t  

p  

s

 

e  

a  

fi  

M  

c

 

F  

r  

1  

m  

t  

t  

t  

F  

t  

c  

s

re also much higher than that of the other methods. The FDR of all the

ethods excluding TNFA are around or above 0.5 on average, while the

ean FDR of glmlasso, glmnet and SBLR models decrease as the sample

ize increases. The high FDR is probably due to the complex correla-

ions among edge weights in the simulated networks, which is often the

ase for structural brain networks. The correlations among edges add

ifficulty to variable selection as false edges correlated with true signal

dges are likely to be selected. It is a challenging problem to further con-

rol the FDR here, as the MT-FDR, which is supposed to keep the FDR

elow 0.05, turns out to have a FDR around 0.9. All the methods except

or MT-FDR have competitive predictive performance in terms of similar

UC for test data. Glmlasso has the lowest mean FPR but also low mean

PR. SBLR models with either 𝐿 1 or elastic-net penalty achieve higher

PR and lower FPR on average than glmnet does under either sample

ize. 

All the numerical experiments are conducted on a machine with six

ntel Core i7 3.2 GHz processors and 64 GB of RAM. Algorithm 1 of

BLR method is implemented in Matlab (R2018a). Under the sample size

 = 1000 , SBLR with 𝐾 = 10 takes 99.6 s on average to run a validation

nstance over the 5 × 11 grid under 5 initializations, glmnet takes 21

econds and GC approach takes 130.4 s on average. 

.2. Non-clique signal subgraphs 

Clique subgraphs have appealing interpretations but could be a re-

trictive assumption. We evaluate the performance of SBLR when such

ssumption is not true by associating the outcome 𝑦 𝑖 with non-clique

ignal subgraphs. Specifically, 𝑦 𝑖 is related to a 4-node ring graph and

 7-node star graph as displayed in Fig. 8 . The nodes in the two sub-
raphs correspond to the basis vectors 𝒒 3 and 𝒒 6 in (6) , respectively. In

his setting, the total number of signal edges and their coefficients are

he same as in Section 3.1 . The sample size is set at 𝑛 = 1000 and SBLR is

stimated under 𝐾 = 10 . The tuning method and other settings are main-

ained the same for SBLR, MT-FDR and TNFA as in Section 3.1 . Of note,

e use 10-fold cross validation combined with the “one-standard-error ”

ule ( Hastie et al., 2009 ) for glmlasso, glmnet and GC to further en-

ourage sparsity for these methods. Under the one-standard-error rule,

he optimal tuning parameters are selected corresponding to the most

arsimonious model whose mean cross-validated deviance is within one

tandard-error of the minimum. 

For a dataset simulated based on the signal subgraphs in Fig. 8 , the

stimated results of glmnet and GC under the optimal penalty factors

re displayed in Fig. 9 . Glmnet and GC select fewer edges under the

ner tuning approach, but the results can still be difficult to interpret.

T-FDR declares 92.11% of the total number of edges significant in this

ase, while TNFA selects no signal networks. 

SBLR selects 5 subgraphs under the optimal penalty pair as shown in

ig. 10 . The first subgraph corresponding to 𝜆1 𝜷1 𝜷
⊤
1 in Fig. 10 partially

ecovers the star graph in Fig. 8 , where the hub structure with Node

 as the central node is evident. In specific, the first entry of 𝜷1 has

uch larger magnitude than the other nonzero entries corresponding to

he other 4 nodes in this subgraph. Therefore the edges from Node 1 to

he other 4 nodes have much larger coefficients than other edges do in

his subgraph, as shown in the estimated coefficient matrix 𝜆1 𝜷1 𝜷
⊤
1 in

ig. 10 . The second subgraph corresponding to 𝜆3 𝜷3 𝜷
⊤
3 in Fig. 10 con-

ains the ring graph in Fig. 8 with two wrong edges due to the clique

onstraint. But SBLR is still useful for detecting the set of nodes for this

ignal subgraph. 
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Fig. 6. Estimated nonzero coefficient components { 𝜆ℎ 𝜷ℎ 𝜷
⊤

ℎ 
} (left) of SBLR and their selected subgraphs (right) under 𝐾 = 5 and 𝐾 = 10 for different sample sizes 

𝑛 = 500 and 𝑛 = 1000 , respectively. Black edges denote true signal edges and red ones falsely identified edges; the thickness of each edge is proportional to the 

magnitude of its estimated coefficient. 
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Fig. 7. Mean (bar labels) and standard deviation 

(error bars) of TPR, FPR, FDR and AUC across 100 

simulations under two sample sizes ( 𝑛 = 500 and 𝑛 = 
1000 ). Glmlasso is logistic regression with 𝐿 1 penalty; 

SBLR-L1 indicates that only 𝐿 1 penalty ( 𝜂 = 1 ) is ap- 

plied for SBLR. 

Fig. 8. True signal subgraphs in one simulation: a 4-node ring graph and a 7- 

node star graph. 
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Fig. 11 displays the mean and SD of the TPR, FPR, FDR in edge se-

ection and AUC on test data for each method across 100 datasets simu-

ated under 𝑛 = 1000 in this setting. Compared to Fig. 7 , the performance

f SBLR decreases as expected when the clique assumption is not true,

n terms of lower TPR, higher FPR and higher FDR on average under

he same sample size with either 𝐿 1 or elastic-net penalty. The mean

PR and FDR of glmlasso, glmnet and GC decrease considerably under

he one-standard-error rule compared to Fig. 7 , but their mean TPRs

lso decrease, especially for glmlasso and GC. In addition, the 10-fold

ross validation is more time-consuming than the validation tuning in

ection 3.1 . The glmnet now takes 204 seconds on average to run a

ross-validation instance and GC takes about 25 minutes on average,

hile SBLR takes 106.2 seconds on average to run a validation instance

n this case. 
. Application: SC subgraphs distinguishing high and low 

rystallized intelligence of adolescents 

We apply our method to the ABCD dataset described in Section 2.1 to

xamine the associations between structural brain network and crystal-

ized intelligence for adolecents aged 9–10 years. NIH toolbox measures

rystallized intelligence through two core tests: Picture Vocabulary test

nd Oral Reading Recognition test. They also provide a composite score,

rystallized Cognition Composite, to allow for evaluation of overall crys-

allized intelligence. 

SBLR model is applied to differentiate high from low crystallized

ntelligence for each composite or domain-specific score, as well as

dentifying signal subgraphs contributing to the classification. Some

nput parameters of Algorithm 1 for SBLR are set below in this sec-

ion. The 𝐿 1 fractional penalty factor 𝜂 is set to 1 to encourage spar-

ity in the results, as the AUC on test data is not sensitive to differ-

nt values of 𝜂 in this case. We set 𝐾 = 20 , which is larger than the

umber of selected subgraphs. The tolerance 𝜖 = 10 −5 and 5 initializa-

ions are used in Algorithm 1 . SBLR is trained over a sequence of 11

qually spaced 𝛿 values on the logarithmic scale with 𝛿min = 0 . 1 𝛿max . We

lso compare to glmlasso, penalized graph classification (GC), multiple

esting screening (MT-FDR) and tensor factorization analysis (TNFA)

n variable selection and predictive performance. Full rank 𝐾 = 68 is
et in TNFA, which explains around 75% of the variation in the brain

etworks. 
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Fig. 9. Estimated results of glmnet (left) and GC (right) under the optimal penalty factors. In each panel, the left plot shows estimated coefficients (lower triangular) 

versus true values (upper triangular); the right plot shows the selected edges in the network, where black edges denote true signal edges and red ones falsely identified 

edges; the thickness of each edge is proportional to the magnitude of its estimated coefficient. 

Fig. 10. Estimated nonzero coefficient matrices { 𝜆ℎ 𝜷ℎ 𝜷
⊤

ℎ 
} (upper) of SBLR and their selected subgraphs (bottom). Black edges denote true signal edges and red ones 

falsely identified edges; the thickness of each edge is proportional to the magnitude of its estimated coefficient. 
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We employ stability selection ( Meinshausen and Bühlmann, 2010;

hah and Samworth, 2013 ) to enhance significance of the selected vari-

bles (subgraphs or individual edges) for each method, which involves

any rounds of random data splitting and keeping the variables with

igh selection probability. This approach reduces the variations in the

esults caused by single data split and random initialization. Specifi-

ally, the dataset for each cognitive measure is divided into 3 parts:

raining (60%), validation (20%) and test set (20%). SBLR, glmlasso

nd GC are fitted with training set and the optimal penalty factor(s) is

uned by validation set. The grid settings for tuning glmlasso and GC

re the same as in the simulation study. MT-FDR and TNFA are fitted

ith training and validation sets. We record the selected variables for

ach method (under the optimal penalty factor) as well as AUC for test

ata across 30 rounds of random data splitting, and calculate the prob-

bility of each variable being selected. Directly counting the frequency

f each identified subgraph of SBLR across multiple data splitting in-

olves massive permutations. We actually took advantage of the special

tructure in the extracted subgraphs when counting their frequencies

n the stability selection. Since the identified subgraphs of SBLR from

BCD data often display hub structure, we labeled each selected sub-

raph with the central node whose entry has the largest magnitude in the

orresponding component vector 𝜷ℎ . Then we aligned the identified sub-

raphs (component vectors) with the same central node across 30 data

plits to find the largest common intersection of these subgraphs that ap-

ear frequently, for example more than 50% of the time, which is still a

lique. 
.1. Picture vocabulary 

The Picture Vocabulary test uses an audio recording of words, pre-

ented with four photographic images on the computer screen. The par-

icipants are asked to select the picture that best matches the meaning of

he word. Using the 1 standard deviation rule proposed in Section 2.1 ,

e obtain a dataset containing 1034 kids with high picture vocabulary

cores and 282 low scores. 

SBLR on average selects 9.6 nonzero subgraphs { 𝜆ℎ 𝜷ℎ 𝜷
⊤
ℎ 
} across 30

ata splits with a standard deviation of 4.0. Summarizing the results

rom stability selection, the subgraphs with more than two ROIs and se-

ection probabilities greater than 0.5 are displayed in Fig. 12 . Fig. 12 also

isplays individual connections selected by glmlasso, GC and MT-FDR

ith probabilities greater than 0.5. As can be seen, the nonzero coeffi-

ients estimated by glmlasso and GC are quite similar while GC selects

ore predictive connections. But the results of these methods generally

ack meaningful structure and are difficult to interpret neurologically.

2 components remain significant in TNFA more than 50% of the time,

hile their corresponding basis networks involve all the connections in

he brain network. The average AUCs on test data across 30 splits of

he data are all around 0.78 for SBLR, glmlasso and TNFA with a stan-

ard deviation around 0.03. GC achieves a bit higher AUC of 0 . 79 ± 0 . 03 ,
hile that of MT-FDR is 0 . 72 ± 0 . 04 . 

The three subgraphs identified by SBLR in Fig. 12 all seem to

ave hub structure, with the hub nodes being 26 𝑟 (right rostral middle

rontal), 34 𝑟 (right insula) and 28 𝑟 (right superior parietal) respectively.
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Fig. 11. Mean (bar labels) and standard deviation (error bars) of TPR, FPR, FDR and AUC across 100 simulations under 𝑛 = 1000 . Glmlasso is logistic regression with 

𝐿 1 penalty; SBLR-L1 indicates that only 𝐿 1 penalty ( 𝜂 = 1 ) is applied for SBLR ( 𝐾 = 10 ). 
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lot (d) of Fig. 12 implies that right-handed children with stronger neu-

al connections among 26 𝑟 (right rostral middle frontal), 27 𝑟 (right su-

erior frontal) and 2 𝑟 (right caudal anterior cingulate), and weaker con-

ections among 26 𝑟, 29 𝑟 (right superior temporal) and 30 𝑟 (right supra-

arginal) are more likely to get high scores on Picture Vocabulary test.

lot (e) of Fig. 12 implies that right-handed children with stronger neu-

al connections among 34 𝑟 (right insula), 21 𝑟 (right postcentral) and 1 𝑟
right bankssts), and weaker connections among 34 𝑟, 14 𝑟 (right middle

emporal) and 8 𝑟 (right inferior temporal) are more likely to get high

cores in Picture Vocabulary test. Plot (f) of Fig. 12 implies that right-

anded children with stronger neural connection between 28 𝑟 (right su-

erior parietal) and 30 𝑟 (right supramarginal), and weaker connection

etween 28 𝑟 (right superior parietal) and 34 𝑙 (left insula) are more likely

o achieve high ability of this cognition measure. Some of these brain

egions agree with the findings in neuroscience literature, for example,

ight superior parietal gyrus, right supramarginal gyrus and left insula

re among the activated regions in auditory language processing tasks

or children ( Oh et al., 2014; Sugiura et al., 2011; Vogan et al., 2016 ). 

.2. Reading recognition 

Participants on this test are asked to read and pronounce letters and

ords as accurately as possible. Applying the 1 standard deviation rule

roposed in Section 2.1 , we construct a dataset containing 918 subjects

ith high Reading Recognition scores and 477 subjects with low scores.

SBLR on average selects 9 . 3 ± 4 . 2 nonzero subgraphs across 30 splits

f the dataset. Fig. 13 displays the subgraphs identified by SBLR with se-

ection probabilities > 0 . 5 , along with connections selected by glmlasso,

C and MT-FDR with probabilities > 0 . 5 . The estimated nonzero coeffi-

ients of glmlasso and GC still look similar, but GC on average selects
lmost double the connections as that of glmlasso. Four components re-

ain significant in TNFA more than 50% of the time, which correspond

o all the connections in the brain network. GC on average achieves the

ighest AUC for test data of 0 . 73 ± 0 . 02 across 30 splits. The AUCs of the

est methods are all around 0 . 70 ± 0 . 03 in this case. 

The subgraphs in Fig. 13 located by SBLR display hub structure again

nd share many similarities to those associated with Picture Vocabulary.

ompared to Fig. 12 , Reading Recognition measure has two hub nodes

n common with Picture Vocabulary: 26 𝑟 (right rostral middle frontal)

nd 28 𝑟 (right superior parietal). And Plot (f) of Fig. 12 is a subgraph

f Plot (f) in Fig. 13 . The latter has two extra ROIs: 21 𝑟 (right post-

entral) and 27 𝑙 (left superior frontal), and stronger connections among

he two nodes and the hub node ( 28 𝑟 ) have positive effect on the cog-

itive functioning of Reading Recognition. Plot (d) of Fig. 13 implies

hat right-handed children with stronger neural connections among 17 𝑟
right pars opercularis), 26 𝑟 (right rostral middle frontal) and 31 𝑟 (right

rontal pole) are more likely to get high scores on Reading Recogni-

ion test, while the connection strengths among 26 𝑟, 32 𝑟 (right temporal

ole) and 34 𝑟 (right insula) may have negative effect on this cognitive

unctioning. Plot (e) of Fig. 13 implies that stronger neural connections

mong 17 𝑙 (left pars opercularis), 27 𝑟 (right superior frontal) and 2 𝑟
right caudal anterior cingulate) have positive effect on this cognitive

unctioning, while the connection strength between 27 𝑟 and 9 𝑟 (right

sthmus cingulate) may have a slight negative effect. 

.3. Crystallized cognition composite 

Crystallized Cognition Composite can be interpreted as a global as-

essment of verbal reasoning. This composite score is derived by averag-

ng the normalized scores of Picture Vocabulary and Reading Recogni-
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Fig. 12. Results of Picture Vocabulary: (a) connections selected by glmlasso with selection probabilities > 0 . 5 across 30 rounds of random data splitting; (b) connec- 

tions selected by GC with selection probabilities > 0 . 5 ; (c) connections selected by MT-FDR with selection probabilities > 0 . 5 ; (d) - (f) subgraphs ( ≥ 3 ROIs) selected 

by SBLR with selection probabilities > 0 . 5 . The subgraphs are arranged in the descending order of selection frequency. The thickness of each edge is proportional to 

the magnitude of its mean estimated coefficient; the color goes from blue to red as the coefficient goes from negative to positive. 
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Fig. 13. Results of Reading Recognition: (a) connections selected by glmlasso with selection probabilities > 0 . 5 across 30 splits of the dataset; (b) connections selected 

by GC with selection probabilities > 0 . 5 ; (c) connections selected by MT-FDR with selection probabilities > 0 . 5 ; (d) - (f) subgraphs ( ≥ 3 ROIs) selected by SBLR with 

selection probabilities > 0 . 5 . The subgraphs are arranged in the descending order of selection frequency. The thickness of each edge is proportional to the magnitude 

of its mean estimated coefficient; the color goes from blue to red as the coefficient goes from negative to positive. 
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Fig. 14. Results of Crystallized Cognition Composite: (a) connections selected by glmlasso with selection probabilities > 0 . 5 across 30 splits of the data; (b) connections 

selected by MT-FDR with probabilities > 0 . 5 ; (c) - (f) subgraphs ( ≥ 3 ROIs) selected by SBLR with probabilities > 0 . 5 . The subgraphs are arranged in the descending 

order of selection frequency. The thickness of each edge is proportional to the magnitude of its mean estimated coefficient; the color goes from blue to red as the 

coefficient goes from negative to positive. 
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ion test, and the age-adjusted scale scores are calculated based on this

ew distribution ( Weintraub et al., 2013 ). Under the 1 standard devi-

tion rule, we identify 1084 high crystallized cognitive cases and 536

ow crystallized cognitive cases. 

SBLR on average selects 12 . 3 ± 3 . 5 nonzero subgraphs across 30 splits

f the data. Fig. 14 displays the subgraphs identified by SBLR with se-

ection probabilities > 0 . 5 , along with individual connections selected

y glmlasso and MT-FDR with probabilities > 0 . 5 . GC selects far more

onnections on average than glmlasso or MT-FDR does in this case, with

lmost two times that of MT-FDR, and hence its results are not displayed.

 components maintain significant in TNFA more than 50% of the time,

hich again corresponds to all the connections in the brain network.

he AUCs on test data across 30 splits are around 0 . 76 ± 0 . 02 for SBLR,

lmlasso and TNFA, 0 . 78 ± 0 . 02 for GC, and 0 . 71 ± 0 . 03 for MT-FDR. 

The subgraphs identified by SBLR in Fig. 14 predictive of high and

ow crystallized cognitive ability have many overlaps with the selected

ubgraphs associated with Picture Vocabulary and Reading Recognition.

he subgraph in Plot (c) of Fig. 14 seems like a “composite ” of the sub-

raphs in Plot (d)’s of both Figs. 12 and 13 . Plot (f) of Fig. 14 echoes Plot

f)’s in both Figs. 12 and 13 . The subgraph in Plot (e) of Fig. 14 overlaps

ith that in Plot (e) of Fig. 13 . Plot (e) of Fig. 14 implies that right-

anded children with stronger neural connections among 17 𝑙 (left pars

percularis), 13 𝑟 (right medial orbitofrontal), 27 𝑟 (right superior frontal)

nd 2 𝑟 (right caudal anterior cingulate) are more likely to have high level

f functioning on crystallized cognition. Plot (d) of Fig. 14 implies that

tronger connection between 31 𝑟 (right frontal pole) and 23 𝑟 (right pre-

entral) has positive effect on crystallized cognitive functioning, while

he connection strength between 31 𝑟 and 20 𝑙 (left pericalcarine) may

ave negative effect. 

. Discussion 

We have presented a useful tool for studying differences in brain con-

ectivity patterns between groups, which produces more interpretable

esults than unstructured classifiers do, while maintaining competitive

redictive performance. Simulation studies show that SBLR can success-

ully identify true signal subgraphs with high TPR and low FPR when the

odel assumption is true, and its selection accuracy could generally be

mproved by increasing the number of subjects in the data. In applica-

ions to crystallized cognition data, although penalized graph classifica-

ion method ( Arroyo Relión et al., 2019 ) obtains a bit higher predictive

erformance than SBLR, our method contributes to a more insightful

nderstanding of the sub-structure of brain connectome related to crys-

allized intelligence, with discovery of a sequence of sub-networks with

ub structure as well as the leading brain regions in these subgraphs. 

SBLR is theoretically able to represent any coefficients in a general-

zed linear regression with sufficient number of components (one edge

er component). But the regularization terms encourage small and fewer

liques. Simulation study shows that SBLR tends to introduce redundant

dges when true signal subgraphs have sparse structure. But SBLR is still

seful for capturing the hub structure of a star signal subgraph and de-

ecting the sets of nodes for predictive subgraphs. In practice, we can

valuate the out-of-sample predictive performance of SBLR to determine

hether the model assumption is reasonable. High prediction accuracy

ould justify the model assumption to the extent that putting the struc-

ured constraints on the coefficients makes the unstructured model less

verfitting. We suggest to use the proposed model when the number

f selected subgraphs is small and the out-of-sample predictive perfor-

ance is comparable to or better than glmnet or GC. Ideally, we could

ave statistical tests for each coefficient in the subgraphs, but testing

he significance of the coefficients in SBLR is a challenging open prob-

em due to the bilinear framework and inclusion of the penalty terms

 Xia et al., 2020 ). 

There are other ways to define subgraphs, for example,

ogelstein et al. (2012) defined a subgraph as a minimum set of vertices

nd edges distinguishing groups; Khambhati et al. (2018) constructed
ubgraphs based an unsupervised non-negative matrix factorization,

hich is similar to Zhang et al. (2019) ; Chen et al. (2020) detected

nd tested altered brain connectivity networks with k-partite graph

opological structure; mutually exclusive subgraphs may capture the

odular structure of brain connectome. More flexible ways of defining

ubgraphs with more interesting network topological properties can be

xplored in the future. 

Although SBLR is motivated from structural connectivity analysis,

he method can certainly be used in functional brain connectivity anal-

sis to identify signal subgraphs in the functional brain network re-

ated to a binary outcome, after constructing the functional connectiv-

ty matrices based on correlations of BOLD time series data of pairwise

rain regions. In addition, it is an interesting future direction to con-

ider how to aggregate community-level or lobe-level information into

BLR to improve the selection accuracy of signal subgraphs. For exam-

le, Xia et al. (2020) exploited both edge- and community-level infor-

ation in modeling brain networks. Xie et al. (2013) compared different

lgorithms in overlapping community detection. 

Very few studies have focused on WM’s contribution to cognition.

pecific to crystallized cognition, there have only been a handful of stud-

es examining major WM tracts’ roles. For example, higher FA in supe-

ior longitudinal fasciculus was related to higher crystallized cognition

n children ( Simpson-Kent et al., 2020 ), higher FA in forceps minor was

elated to higher crystallized cognition in adults ( Góngora et al., 2020 ).

oth tracts contain numerous inter-hemisphere connections across sev-

ral brain regions (e.g., superior longitudinal fasciculus) or within

rontal region (e.g., forceps minor). Our study represents the very first

ffort in the literature specifying clique subgraphs of SC related to crys-

allized cognition. Importantly, across composite score and individual

omains of crystallized cognition, we identified consistent brain re-

ions and subgraphs (refer to Figure 12, 13 and 14 ) predominantly

n right-hemisphere frontal-parietal regions. The finding is consistent

o cumulative functional subgraph literature on frontal-parietal driven

xecutive network during neuro-development ( Chai et al., 2017 ), and

exible periphery of the language network ( Fedorenko and Thompson-

chill, 2014 ). 

We also noticed that the classification accuracy with AUC around

.78 for crystallized cognition is very high. From our previous study, SC

s robust and reproducible and more predictive of cognition compared

ith functional connectivity (FC) derived from functional MRI ( Zhang

t al., 2019; 2018 ). We hypothesize that SC is a better biomarker for

nderstanding the cognition development in adolescents. To verify this

ypothesis, analyses and comparisons with FC seem to be a natural next

tep. 

The frontal-parietal driven subgraphs among those aged 9-10 years

epresent a set of critical biomarkers for overall neuro-development.

owever, these subgraphs’ physiological meaning can be transient

cross ages. Comparisons across a broader age range should be con-

ucted to further confirm the role of these subgraphs in crystallized

ognition and its development. With more data being recorded in the

BCD study, we hope to further analyze SC and cognition development.
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ppendix A. Coordinate descent algorithm for model estimation 

1. Updates for entries in 
{
𝜷ℎ 

}𝐾 

ℎ =1 

Minimizing the loss function (4) with respect to 𝛽ℎ𝑢 , the 𝑢 th entry of

ℎ , given all the other parameters becomes: 

in 
𝛽ℎ𝑢 

𝐿 ( 𝛽ℎ𝑢 ) = − 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝑙𝑙 𝑖 ( 𝛽ℎ𝑢 ) + 𝑑 ℎ𝑢 
||𝛽ℎ𝑢 

|| + 𝑒 ℎ𝑢 𝛽
2 
ℎ𝑢 
∕2 (A.1)

here 

 ℎ𝑢 = 𝛿𝜂|𝜆ℎ |∑
𝑣 ≠𝑢 

|𝛽ℎ𝑣 | (A.2)

 ℎ𝑢 = 𝛿(1 − 𝜂) 𝜆2 
ℎ 

∑
𝑣 ≠𝑢 

𝛽2 
ℎ𝑣 

. (A.3)

qs. (A.2) , (A.3) imply that the penalty factors 𝑑 ℎ𝑢 and 𝑒 ℎ𝑢 in (A.1) for

𝛽ℎ𝑢 | are related to the nonzero entries in 𝜷ℎ excluding 𝛽ℎ𝑢 . Hence 𝛽ℎ𝑢 is

ore likely to be shrunk to zero if the current number of nonzero entries

n 𝜷ℎ is large. This adaptive penalty will lead to a set of sparse vectors

𝜷ℎ 

}𝐾 

ℎ =1 and hence a set of small signal subgraphs. 

Note that 

𝜕𝑙𝑙 𝑖 

𝜕𝛽ℎ𝑢 

= 2( 𝑦 𝑖 − 𝑝 𝑖 ) 𝜆ℎ 𝑊̃ 𝑖 [ 𝑢 ⋅] 𝜷ℎ (A.4)

𝜕 2 𝑙𝑙 𝑖 

𝜕𝛽2 
ℎ𝑢 

= − 𝑝 𝑖 (1 − 𝑝 𝑖 ) 
(
2 𝜆ℎ 𝑊̃ 𝑖 [ 𝑢 ⋅] 𝜷ℎ 

)2 
≤ 0 . (A.5)

herefore each log-likelihood 𝑙𝑙 𝑖 is a concave function of 𝛽ℎ𝑢 when fixing

he others, and (A.1) is a convex optimization for 𝛽ℎ𝑢 . 

Suppose the current estimate for 𝛽ℎ𝑢 at iteration 𝑡 is 𝛽
( 𝑡 ) 
ℎ𝑢 

and fix the

ther parameters at their current estimates. The Newton algorithm for

inimizing − 

1 
𝑛 

∑𝑛 

𝑖 =1 𝑙𝑙 𝑖 ( 𝛽ℎ𝑢 ) in (A.1) is equivalent to minimizing the fol-

owing second-order Taylor expansion at the current estimate 𝛽
( 𝑡 ) 
ℎ𝑢 

: 

 

( 𝑡 ) 
1 ( 𝛽ℎ𝑢 ) ≜ 𝑐 

( 𝑡 ) 
ℎ𝑢 

+ 𝑏 
( 𝑡 ) 
ℎ𝑢 

(
𝛽ℎ𝑢 − 𝛽

( 𝑡 ) 
ℎ𝑢 

)
+ 

𝑎 
( 𝑡 ) 
ℎ𝑢 
(
𝛽ℎ𝑢 − 𝛽

( 𝑡 ) 
ℎ𝑢 

)2 
(A.6)
2 
here 

 

( 𝑡 ) 
ℎ𝑢 

= − 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝑙𝑙 𝑖 ( 𝛽
( 𝑡 ) 
ℎ𝑢 
) (A.7)

 

( 𝑡 ) 
ℎ𝑢 

= − 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝜕𝑙𝑙 𝑖 ( 𝛽
( 𝑡 ) 
ℎ𝑢 
) 

𝜕𝛽ℎ𝑢 

(A.8)

 

( 𝑡 ) 
ℎ𝑢 

= − 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝜕 2 𝑙𝑙 𝑖 ( 𝛽
( 𝑡 ) 
ℎ𝑢 
) 

𝜕𝛽2 
ℎ𝑢 

. (A.9)

imilar to Friedman et al. (2010) , 𝛽ℎ𝑢 is then updated by minimizing 

 

( 𝑡 ) 
1 ( 𝛽ℎ𝑢 ) + 𝑑 

( 𝑡 ) 
ℎ𝑢 
||𝛽ℎ𝑢 

|| + 𝑒 
( 𝑡 ) 
ℎ𝑢 

𝛽2 
ℎ𝑢 
∕2 (A.10)

hich has a closed form solution 

( 𝑡 +1) 
ℎ𝑢 

= 

sign 
(
𝑎 
( 𝑡 ) 
ℎ𝑢 

𝛽
( 𝑡 ) 
ℎ𝑢 

− 𝑏 
( 𝑡 ) 
ℎ𝑢 

)
𝑎 
( 𝑡 ) 
ℎ𝑢 

+ 𝑒 
( 𝑡 ) 
ℎ𝑢 

⋅
(|||𝑎 ( 𝑡 ) ℎ𝑢 

𝛽
( 𝑡 ) 
ℎ𝑢 

− 𝑏 
( 𝑡 ) 
ℎ𝑢 

||| − 𝑑 
( 𝑡 ) 
ℎ𝑢 

)
+ 

(A.11) 

f 𝑎 
( 𝑡 ) 
ℎ𝑢 

+ 𝑒 
( 𝑡 ) 
ℎ𝑢 

> 0 . From (A.3), (A.5) and (A.9) we know that 𝑎 
( 𝑡 ) 
ℎ𝑢 

≥ 0 and

 

( 𝑡 ) 
ℎ𝑢 

≥ 0 . 
The case 𝑎 

( 𝑡 ) 
ℎ𝑢 

+ 𝑒 
( 𝑡 ) 
ℎ𝑢 

= 0 implies that (i) 𝜆
( 𝑡 ) 
ℎ 

= 0 (ii) 𝛽( 𝑡 ) 
ℎ𝑣 

= 0 for 𝑣 ≠ 𝑢 or

iii) 𝜂 = 1 and 𝑝 
( 𝑡 ) 
𝑖 

= 0 or 1, ∀𝑖 . For the former two cases, the lower trian-

ular part of the component matrix 𝜆
( 𝑡 ) 
ℎ 
𝜷
( 𝑡 ) 
ℎ 
𝜷
( 𝑡 ) ⊤
ℎ 

becomes zero no matter

hat value 𝛽ℎ𝑢 takes. So we set 𝛽
( 𝑡 +1) 
ℎ𝑢 

= 0 in these cases. Regarding (iii),

f 𝑝 
( 𝑡 ) 
𝑖 

≡ 𝑦 𝑖 , ∀𝑖, (A.10) is minimized at 𝛽ℎ𝑢 = 0 because 𝑏 
( 𝑡 ) 
ℎ𝑢 

= 0 at this time

ccording to (A.4) and (A.8) together with 𝑎 
( 𝑡 ) 
ℎ𝑢 

= 𝑒 
( 𝑡 ) 
ℎ𝑢 

= 0 . Then the first

erivative of (A.10) becomes 𝑑 
( 𝑡 ) 
ℎ𝑢 

( > 0 ) when 𝛽ℎ𝑢 > 0 and − 𝑑 
( 𝑡 ) 
ℎ𝑢 

( < 0 ) when

ℎ𝑢 < 0 . Otherwise, 𝑝 
( 𝑡 ) 
𝑖 

= 0 or 1 ∀𝑖 may be due to bad initialization. For

xample, a large magnitude of initial values of the parameters could eas-

ly make 𝑝 𝑖 become 1 or 0, ∀ i through the logit link in (1) . In this case,

etting 𝛽ℎ𝑢 = 0 could prevent the divergence of the solution. In practice,

e always normalize the entries in { 𝑊 𝑖 } before applying SBLR. We also

ecommend to initialize each parameter from 𝑈 (−0 . 1 , 0 . 1) to avoid the

xplosion in the logit scale. 

The computational complexity of updating each entry 𝛽ℎ𝑢 is 𝑂( 𝑛𝑉 )
er iteration and thus that of updating 

{
𝜷ℎ 

}𝐾 

ℎ =1 is 𝑂( 𝑛𝐾𝑉 2 ) . 

2. Updates for { 𝜆ℎ ∶ ℎ = 1 , … , 𝐾} 

Minimizing the loss function (4) with respect to 𝜆ℎ when fixing the

thers amounts to: 

in 
𝜆ℎ 

𝐿 ( 𝜆ℎ ) = − 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝑙𝑙 𝑖 ( 𝜆ℎ ) + 𝑑 ℎ 
||𝜆ℎ 

|| + 𝑒 ℎ 

𝜆2 
ℎ 

2 
(A.12)

here 𝑑 ℎ = 𝛿𝜂
∑𝑉 

𝑢 =1 
∑

𝑣<𝑢 
||𝛽ℎ𝑢 

||||𝛽ℎ𝑣 
|| and 𝑒 ℎ = 𝛿(1 − 𝜂) 

∑𝑉 

𝑢 =1 
∑

𝑣<𝑢 𝛽
2 
ℎ𝑢 

𝛽2 
ℎ𝑣 

. 

Since 𝜆ℎ is linear in the logit link (1) given the others, the log-

ikelihood is a concave function of 𝜆ℎ . Suppose the current estimate

or 𝜆ℎ is 𝜆
( 𝑡 ) 
ℎ 

. Similar to Section A.1 , 𝜆ℎ is updated by minimizing the

ollowing quadratic approximation to (A.12) : 

 

( 𝑡 ) 
𝜆,ℎ 

+ 𝑏 
( 𝑡 ) 
𝜆,ℎ 

(
𝜆ℎ − 𝜆

( 𝑡 ) 
ℎ 

)
+ 

𝑎 
( 𝑡 ) 
𝜆,ℎ 

2 

(
𝜆ℎ − 𝜆

( 𝑡 ) 
ℎ 

)2 
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here 
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ote that 𝑎 
( 𝑡 ) 
𝜆,ℎ 

≥ 0 and 𝑒 
( 𝑡 ) 
ℎ 

≥ 0 . If 𝑎 
( 𝑡 ) 
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ℎ 

> 0 , 𝜆ℎ is updated to the

rgmin of (A.13) : 
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f 𝑎 
( 𝑡 ) 
𝜆,ℎ 

+ 𝑒 
( 𝑡 ) 
ℎ 

= 0 , then either the component matrix 𝜷
( 𝑡 ) 
ℎ 
𝜷
( 𝑡 ) ⊤
ℎ 

is a zero ma-

rix or 𝑝 
( 𝑡 ) 
𝑖 

= 0 or 1, ∀𝑖 . In either case, 𝜆
( 𝑡 +1) 
ℎ 

is set to 0 following a similar

iscussion in Section A.1 . 

The computational complexity for updating each 𝜆ℎ is 𝑂( 𝑛𝑉 2 ) per

teration and hence that of updating { 𝜆ℎ } 𝐾 ℎ =1 is 𝑂( 𝑛𝐾𝑉 2 ) . 

3. Update for 𝛼

𝜶 ∈ ℝ 

𝑚 is also updated by minimizing the quadratic approximation

o − 

1 
𝑛 

∑𝑛 

𝑖 =1 𝑙𝑙 𝑖 at the current estimate 𝜶( 𝑡 ) with the updating rule 

( 𝑡 +1) = 

{ 

𝜶( 𝑡 ) − 

[
𝐴 

( 𝑡 ) ]−1 𝒃 ( 𝑡 ) if 𝐴 

( 𝑡 ) is nonsingular 

𝟎 otherwise 
(A.16)
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he computational complexity of this step is 𝑂( 𝑚 

2 𝑛 ) . 
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